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A method based on a variational procedure is presented which provides 
simple and useful approximate solutions to a wide variety of nonlinear 
stochastic differential equations. This method of "statistical linearization" 
is most successful when the stochasticity of the differential equation is due to 
excitations which are normally distributed or harmonic with random phase. 
Effects due to deviations from normality can be corrected for in a systematic 
fashion. Comments regarding existence and uniqueness are given and some 
error bounds arising from the use of statistical linearization are computed. 

KEY W O R D S  : Stochastic processes, nonl inear  stochast ic  equat ions ; 
stat ist ical l inear izat ion ; au tocor re la t ion  func t ions  ; spectral  densities., 

1 .  I N T R O D U C T I O N  

Nonl inea r  s tochast ic  differential  equat ions  occur  in diverse areas  o f  physics  
and  engineering,  such as t r anspor t  theory  in nonequi l ib r ium stat is t ical  
mechanics ,  (1'2) m o d e - m o d e  coupl ing in cri t ical  dynamics ,  (a) tu rbulen t  flow, (4) 
and  the s t ructura l  response to r a n d o m  excitat ions.  (5) The stochast ic  na ture  o f  
these p rob lems  either comes f rom our  desire to character ize  a system having 
many  degrees o f  f reedom in terms o f  a descr ip t ion  which requires much  less 
in format ion ,  or  f rom a strict lack o f  in format ion  abou t  the system. In  ei ther 
case, one equa t ion  used in mode l ing  such p rob lems  is the general ized Lange-  
vin equa t ion  

(~ /~ t )a j ( t )  = Hi(t ,  {as(s)}) + Fj(t) ,  j ,  l = 1,..., N,  to <~ s <<. t (1) 
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subject to the condition 

<Fj(t)>0 = 0 (2) 

Here the {Gj(t)} are a set of N time-dependent system variables, Hs(t, {Gz(s)}) 
is a function, linear or nonlinear, which contains the explicit dependence of 
the rate of change of Gj(t) upon the values of the chosen variables Gz(s) 
between some initial time to and t, and Fj(t) is a fluctuating external force 
whose mean value (averaged over some initial distribution of the Fj), as 
expressed by Eq. (2), is zero. If  the functionals Hj satisfy the condition 

Hi(t, {G,(s)}) = Hi(t, {Gz(t)}), to ~ s ~< t (3) 

the corresponding Langevin equation is Markovian; otherwise it is non- 
Markovian. 

An essential difficulty with current methods used in solving the Langevin 
equation is that exact solutions can only readily be obtained for systems in 
which the random noise is Gaussian-delta-correlated, 

<Fj(tl)Fe(t2)) = d3(t~ - t2)3kj. (4) 

with d a constant expressing the strength of the delta function. In such a case 
the random process is Markovian and the Fokker-Planck equation can be 
used to calculate the various statistical quantities for the observables in 
question. Markovian, however, implies memoryless (instantaneous) and 
clearly many processes do involve memory and time lag. 

This paper will be the first in a series of publications devoted to a method 
which has had some widespread publicity in Soviet and American engineering 
literature and has been used extensively by control and systems analysts to 
construct solutions for a variety of nonlinear stochastic equations. This 
approach, the method of statistical or equivalent linearization, (6~ was origi- 
nated by Krylov and Bogoliubov (7~ for the treatment of nonlinear systems 
under deterministic excitations and was later extended by Booton, (8~ 
Caughey, (9~ and Crandall (~~ to random processes. Statistical linearization is 
based .on the replacement in Eq. (1) of all nonlinear functions by linear 
functions which in some sense are equivalent statistically. By requiring that 
the mean squared error due to this replacement be minimal, one obtains an 
exact reproduction of the mean and an approximate expression for the 
dispersion. Of course, the first two moments do not completely characterize a 
distribution, but for practical purposes, knowing these is sufficient for a 
determination of the measurable quantities of a system. 

We begin in Section 2 by describing the general theory and procedure 
involved in the statistical linearization of nonlinear stochastic differential 
equations and its connection to the theory of optimization of nonlinear 
transformations. Mention is made of the fact that for Gaussian processes 
statistical linearization is indeed an exact optimization theory. 
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This is of  paramount consequence when it is realized that even for line r 
ar stochastic differential equations simple solutions of practical import are 
rarely obtained except when excitations are normally distributed or harmonic 
with a random phase. 

In Sections 3 and 4 we examine the conditions under which nonlinear 
systems subjected to Gaussian noise can be suitably approximated by a linear 
representation. In such a situation, subordinate to certain applicability and 
normalization criteria, statistical linearization may be used--even for non- 
Gaussian external fluctuations--as a valid procedure in computing the average 
properties of the response. 

When the above-mentioned criteria are not completely obeyed, systematic 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derived which take account of  these deviations from 
normality. This, unfortunately, complicates the simple analytical results of 
statistical linearization and necessitates solving an integral equation of 
Hammerstein type. Comments regarding existence and uniqueness are made 
and the error bounds due to the truncated statistical linearization solution 
are computed. 

In another publication the results of  this work will be extended to the 
case when the external excitation is Gaussian noise coupled to a deterministic 
harmonic signal. 

Application of  the procedures derived here for Gaussian input noise are 
deferred to a companion paper (11~ in which variances, autocorrelation func- 
tions, and spectral densities are computed for Langevin equations of the 
Duffing oscillator type 

2 +aYc + (x + fif(x)) = F( t )  (5) 

where x(t)  is the position of the oscillator at time t, f ( x )  is some nonlinear 
function of x, F( t )  is an external fluctuating force, and ~ and/~ are constant 
coefficients of damping and stiffness, respectively. We consider this equation 
rather than the more usual form of the Duffing equation where f ( x )  = x a, 
since the Duffing equation has more widespread physical application than 
Brownian motion of an anharmonic oscillator in a heat bath. <12~ It can be 
shown that (5) is also the equation for the forced motion due to an external 
random force of a rectangular plate supported by immovable hinges and 
subject to linear stress-strain relations. <a~ For nonlinear stress-strain relations 
a more general equation results ~la> 

2 + ~2 + K tan(rrx/2L) = F(t) ,  - L  < x < L (6) 

which for small x / L  deviates from the Duffing model by a term of the order 
(x/L) ~. 
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Particular emphasis is placed on the Duffing equation itself since com- 
parison with previous work by Bixon and Zwanzig (BZ) (12~ and Morton and 
Corrsin (1~) is possible. The work of MC is especially noteworthy in that our 
general procedure enables us to obtain a number of  their spectral density 
approximations which were derived by them via diagrammatic techniques. 

2. O P T I M A L  T R A N S F O R M A T I O N S  A N D  STATISTICAL 
LIN EARIZATION 

Consider the dynamical system 

Z: F(t) -+ X(t )  (7) 

in which the transformation Z maps some initial random process F at time to 
into some final random process X at time t. The general theory of optimization 
of nonlinear transformations (15~ tells us that for given random processes X 
and F which are expressible either analytically or in terms of experimental 
data, it is possible to determine some optimal transformation Z*, Z*(F) 
Z(F) ,  relating F to X such that the mean squared error upon replacement of  
Z by Z* is minimized, 

l im(1/2T)  [Z(F)  - Z*(F)]  2 dt = ~ = rain (8) 
z 

A necessary and sufficient condition for this to occur is that Z*  exactly 
reproduce the mean value of Z. The map Z*  is a characteristic of  the dynami- 
cal system and may be linear or nonlinear, time dependent or time indepen- 
dent. In particular, Z*  for the nonlinear integral transformation 

X(t)  = K[F(t - .r), .r] dr (9) 

or alternatively, in terms of its nonlinear differential equation analog, 

Q(d/dt) Y(t)  + g(d/dt )X( t )  --- U(d/dt)F(t) (10) 

can be shown by a variational procedure to be a nonlinear Wiener -Hopf  
integral equationJ TM In (10) we define Q(d/dt), R(d/dt), and U(d/dt) to be 
linear differential operators of time and Y(t) = f (x )  to be a nonlinear 
function of the random process X(t).  2 

Under the stringent conditions that X and F be Gaussian, though not 
necessarily delta-correlated, Z*  reduces to a linear transformation. Statistical 
linearization is an approximation to the general theory of optimal transforma- 
tions in the mean squared sense in that it always assumes Z* to be linear, 

2 We limit ourselves in this paper to odd nonlinearities in the independent variables. For 
even nonlinearities a somewhat different minimization procedure needs to be applied. 
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regardless of  the distributions of  the random processes X and F, but becomes 
an exact optimization theory when the random processes are Gaussian- 
distributed. Thus, for Gaussian random processes, statistical linearization 
results in an exact reproduction of mean values and a minimization in the 
deviations of  the second moment  statistics. 

Specializing this statement to (10), we note that in the integral repre- 
sentation F is nonlinear due to a term containing Y(t) .  However, Z*  will be 
linear if Y(t )  is replaced by k~X(t).  Applying a variational procedure to (8) 
by minimizing ~ with respect to h~, 

8~/Shz = 2(h~(X2)r - ( f ( X ) X ) r )  = 0 ( l l a )  

we obtain an optimal Z*  on setting a 

h~ = < f ( X ) X ) T / ( X 2 ) r  ( l lb )  

The brackets with the subscript T containing the random processes denote 
time averages. For ergodic dynamical systems this may be replaced by 
ensemble averages. In such cases the subscript T will be deleted. 

3. STATIST ICAL L INEARIZATION A N D  S T A T I O N A R Y  
A U T O C O R  RELATION F U N C T I O N S  

Prior to our derivation of the bounds of applicability of  statistical 
linearization we shall need the following definitions and expansions. 

For a random process A(t)  we define the stationary autocorrelation 
function RAA(r) and its spectral density SAC(co) by 

RAA(r) = ([A(t) -- <A(t))][A(t + r) - (A( t  + r))])  (12a) 

SAA(r = f ; ~  e-~~ dr (lZb) 

By extension, the autocorrelation function of some function of A(t),  f (A( t ) ) ,  
can be written as 

+ c o  

Rf(A)~(A)(r) = j j  If(A1) -- <f(A1))] [f(A2) - ( f (A2))]p(A1,  A2)dA1 
- c o  

(13) 

where the independent variables A~ and A2 are notational shorthand for 
the random processes A(t)  and A(t  + T). 

3 This variational procedure may be generalized to include nonlinearities whose structure 
is dependent upon a number of internal degrees of freedom. Thus, a linear approxima- 
tion to the nonlinearity Y(t) = f(X1, X2 ..... Xn) in which the X~(t) are independent and 
(Xi(t)) = 0 is Y(t) = E~=lh~X~(t), where the h~ are defined by the relations 
hi = <f ( Xz ..... X, O X~>T/ < X~2>T. 
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It therefore follows, due to a result of  Barret and Lampard,  (16~ that  for a 
two-dimensional probability density belonging to a particular class of 
functions A such that  

p(A1, A2) = p(A1)p(A2) ~ bnO(1)tAn t lJ~O(2)tA,~ ~ 2J ~ (14a) 
n=0 

Rs<a~f(a~(r) has a series representation 

RI(A)I(A)(T) = 2 an2P~4a(z) (14b) 
n=l  

The functions 0~ ) are normalized orthogonal polynomials with respect to 
weighting functions p(AO (one-dimensional probability densities) obeying 
the property 

j" p (A,)Og)(A,)O~()(AO dA, --- 3,,,. (14c) 
+ oo 

-oo 

with the coefficients bn and a.  expressed as 
+o~ 

= i [  p(A~, A2)O~X)(Ax)O~2'(A2) dA~ da2 (14d) b~ 
-oo 

an = f(A)p(A)O~(A) dA (14e) 
oo 

PAA(T) is the normalized autocorrelation function defined in terms of the 
variance eA 2, 

pAA(r) = RA~(T)/eA 2 (15a) 

era 2 = ([A(t) - (A(t))]  2) = RAA(O) (15b) 

Forms of specific utility to this and to future work occur when the 
random process A(t) is Gaussian or harmonic of amplitude a and with 
uniformly distributed phase. Then relation (14a) becomes, for the Gaussian 
case, 

1 
p(A1, A2) = 2~crAlcrA2[1 - -  t'A1.42t~2 (r~U/2.U 

[ ~ - 2~rAI(IA2PAIA2(T)'-[- (r~41A22] 
x exp - -- 2 _'-Sy~ -- ~ -- 

2,,A~,.A~[1 -- OA~a~(~')] 

1 { [ I [ A 1  z A~2]]'~ 
- -  2.rro.&o.A,~ exp - ~  \e~---~- + "~-~A2~JJJ 

1 p~A~(~_)He.(AI~He~(A2~ (16a) )< 
n=O 
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and for the harmonic case 
+ o o  

1 f f  Jo(a(u 2 + v2 + 2uv c o s  co'c)l/2)e-i(uAz+vA2> du dv p ( A i ,  A2) = 
- o o  

1 (a 2 Al~)_l/~(a2 _ A22)_1/2 
,rt 2 

when 

and otherwise 

t l ,  n = 0 
A~2/a 2 < O, % = 2, n >i 1 

(16b) 

Thus, O~(x) and b. are 

O.(x) = E~/2T.(x/a) (18c) 

b,~ = cos(noJT) (18d) 

We are now in a position to derive two procedures for calculating Rxx(t) ,  
the autocorrelation function for the solution of (10) when F( t )  is Gaussian. 

p(A1, A~) - 0 

In (16a), p(A)  is given by 

p(A)  = (2~rcrA ~) - 1/~ exp( -- A =/2,~A 2) (17a) 

and He.(x) is the Hermite polynomial with orthogonality condition 

f "~ He.(x)Hem(x) exp(-x2/2) = (2~r)l/~n 8m. ( 7 b )  dx 1 
o o  

Thus, O,~(x) and b~ are 

O.(x) = (n!)-l/2He,~(x) (17c) 

b~ = p~A~('r) (17d) 

In (16b), p(A)  is given by 

p(A)  = (1/zr)(a 2 - A2) -1/2 (lSa) 

and Tn(x) is the Tchebycheff polynomial of  the first kind with orthogonality 
condition 

f f l  (1/=) EnTm(x)Tn(x)(1 - x2) -~/2 dx  = 3m. (18b) 
1 
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These will respectively be referred to, in conjunction with the parlance of 
MC, (~4~ who obtained identical equations via diagrammatic techniques, as 
the cumulant discard and quasilinear Green's function methods. The effects 
of combined Gaussian and harmonic excitations on R,c~(t) will be discussed 
elsewhere. 

3.1. Cumulant  Discard M e t h o d  

By Fourier-transforming (10) and multiplying by its complex conjugate, 
we obtain the spectral density equation for Gaussian unit-delta-correlated 
noise, 

+ 

+ R(ico)Q*(ico)Sxr(r + R*(ico)Q(ico)Syx(r = ]O(iw)12SFr(w) (19) 

This may be confirmed by noting that since 

+ o o  

ff e- C~176 X(t')dtdt' 
- c o  

+ c o  

k(ir i f  e-=~td~ dt dt' (20a) 

on changing variables to t - t '  = ~- and ~r = (t + t ')/2 and averaging over 
the product of the stationary random processes, we find that (20a) reduces to 

2(oJ)2(~) = ~(ieo)k*(io;) dr dK e-~(~ +~/2)e~'(~-~J2)Rxx(-c) 
o o  oo  § 

= 2~3(w - (o')/~(i~o)/~*(io/) d, e-~Rxx('r) 
oo 

= 2~(,~ - ,~')k(i~,)k*(io,')sx~(o~) (20b) 

This produces the first term in (19). The other terms are obtained in a similar 
fashion. This result, although exact, is not very useful since the explicit forms 
of Sxr(w), Sy~(w), and S~r(oJ) are unknown due to the fact that their corre- 
sponding correlation functions depend on the higher order correlations 
between X(t) and Y(t') and between Y(t) and Y(t'). 

As an approximation scheme we can utilize the quasinormal assumption, 
which asserts that the higher order correlations between X(t) and Y(t') and 
Y(t) and Y(t') are decomposable as joint Gaussian processes and therefore 
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expandable in terms of Hermite polynomials. Thus, by virtue of relation 
(14b), 

Rxy(r) = aw~px. (r )  = (az/a~)R**(r) = Ryx(r)  (21a) 

Ryy(r) = ~ a ,2p~(r )  

and therefore 

&~(o,)  = & A o , )  = (a~ /~ )SxAo , ) ,  Sy~(w) = 2 ,  a,~S,(~ (21b) 
n = l  

where &(o~) is the Fourier transform of the vth-degree normalized auto- 
correlation function p**(r), 

~ +  m 

S~(w) = e- '~p~x(r) dr 
cx~ 

= e -~* (1/2~ra. 2) e*~ doJ dr 
oo - o 9  

(22a) 

From the latter equality in (22a) it is a simple matter to derive the convolution 
recursion relation for &(~o): 

~ ar  r 

S~(o 0 = (1/2~r)| S,(o2 - a/)&_l(oJ ) do/, v = 2, 3,... (22b) 
1 

d 

& ( ~ )  = Sxx(O,)/~x 2 

Substitution of relations (21b) into (19), dividing through by lk(ioJ)12, and 
utilizing the identities (22b) yields the cumulant discard spectral density 
equation 

S*x(~ = Ir176 2SF~(~ - I  ~bz(iw)l= 2 a J & ( ~  (23) 

with ~b(io~) and ~b,(i~o) given by 

~b(ito) = O(io~)/k(i~o) 
1 + h~[O(iw)/k(iw)] (24a) 

(~(iw) = O(i~176176 
1 + h,[O(i~o)/k(i~o)] (24b) 

The coefficient hl, h, = h1(%), is the coefficient of statistical linearization as 
defined by (1 lb) and can be identified via (14e) as 

hi = al/~x (25) 

By Fourier-transforming (23) and utilizing the convolution property of 
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Fourier integrals, one obtains the cumulant discard correlation function 
equation (Appendix A), 

Rx~(t)  = Ro(t )  - ,~=2 ~ " J - ~  dt '  R ~ ( t ' ) R ~ ( t  - t ' )  (26) 

where  R0(r) and Rift)  are the Fourier transforms of r and r 
respectively. 

3.2. Ouasil inear Green's Function M e t h o d  

By rewriting (10) as a linear inhomogeneous differential equation in X ( t )  

R X(O + h~O ?~ 

it can be transformed into a Green's function convolution equation 

fo ) X ( t )  = G(r) V F ( t  - r) + r - r)] dr (28a) 

with 
r = Q ( d / d t ) { h l X ( t ) -  Y(t)] (28b) 

In obtaining the result in (28a), we set, without loss of generality, all initial 
conditions equal to zero since they can be absorbed into the noise term 
U ( d / d t ) F ( t ) .  

The autocorrelation function Rxx(r) is then, upon application of (12a), 

0 

0 

x [Ra.~( .~(c 0 + R~a.~e(c 0 + Ru(.~F~ + R~r (29) 

w h e r e a =  7 +  r 2 -  rl. 
For mathematical tractability, as was done for the cumulant discard 

approximation, we employ the quasinormal assumption for R,v(.>F(a) and 
R~r which, together with definition (25), yields 

Rce(.>F(a) = hl~xavpo(.>xv(.)~(a) - avalpQc.~xv(.~v(a) = Ru(.~r = 0 

R ,r  -- (hla~)2po(.>xo(.~x(a) - 2hla~alpo(.~xo(.~x(a) (30) 
oo 

2 n + ~, a, p,~.~.,~(~,) 
1 
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Introduction of the equalities in (30) into (29) results, for known Rv(.~vu(.~v(a), 
in a nonlinear integral equation for Rxx(r) and its higher order correlates 

o0 

Rxx(r) = dr1 dr2 G(rl)G(,2) Rv(.~Fv(.~v(a) + ~ ~ R~r (31) 
71=2 aX J 

which, after changing to "center-of-mass" coordinates t = r x -  r2 and 
T = rl + r2, reduces to a single integral convolution equation ~ (quasilinear 
Green's function equation) 

2a:f R~(r) = Ro(r) + _~ dr' R~(z')R~(z - r') (32) 
~ = 2  ~ X  --oo 

where the functions Ro(t) and R,(t) are identical to those functions entering 
in (26). 

By comparing (32) with (26), one sees that the cumulant discard and 
quasilinear Green's function methods differ only with respect to a change in 
sign in the higher autocorrelation function terms. Furthermore, to first order 
in Ro(t) both solutions are identical to the one obtained by the method of 
statistical linearization; that is, by equating Y(t) = hxX(t). Thus, r in 
(28b) is identically zero and the autocorrelation function R~x(t) of the solution 
to the linear inhomogeneous differential equation (27), just as for Eq. (10), 
reduces to Ro(t). 

Comments about the error bounds due to statistical linearization and 
the quasinormal assumption will be deferred to the next two sections. 

In closing, a few comments should be made about the existence and 
uniqueness of (32) and (26)--written R~(t), respectively--which upon 
comparison with (B. 1 b) of Appendix B are integral equations of Hammerstein 
type, 

R• = fa Rz(t, r ) f [ r ,  R• dr + Ro(t) (33a) 

or in operator form 

R• = ~(o~R• + R0 (33b) 

Here G is a domain, bounded or infinite in E ". Elegant operator-theoretic 
contraction mapping techniques have been applied by Kolodner (~7~ to illus- 
trate existence and uniqueness of a solution to Hammerstein's equation in 
Hilbert space ~ .  The important theorems and accompanying definitions are 
presented in Appendix B. 

One can summarize those results by the following: Given reasonable 

4 The proof of this statement may alternatively be seen by Fourier-transforming (31), 
changing to "center-of-mass" coordinates, and realizing that the result is of the same 
form as (23). 
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boundedness conditions on ~"A = ( I -  A~)-aoU, ;~ any scalar, and mono- 
tonicity requirements on both o~- and ~ a ,  then the existence and uniqueness 
of the quasilinear Green's function and cumulant discard equations, R~(t), 
depend on the bijectivity of s f  and on the boundedness, continuity, range, 
and domain of ~ .  

It appears that since p(t) is bounded and has a Taylor series expansion, 
f ( t ,  p), being some polynomial of o(t), is Lipschitzian on bounded sets. That 
~f" is bounded (for an example, see Ref. 1 l) therefore implies uniqueness via 
Theorem B.1, with the question of existence determined by the criterion of 
bijectivity, Theorems B.2 and B.4. 

4. ERROR B O U N D S  A N D  STATISTICAL LINEARIZATION 

In the introduction it was mentioned that statistical linearization is an 
outgrowth of the Krylov-Bogoliubov (KB) asymptotic analysis to deter- 
ministic differential equations which are perturbed by periodic forcing 
functions. To motivate the subsequent discussion on statistical linearization 
it will be of interest to give some background to the KB method. 

In short, for a given forcing function F(t) 

F(t) = Ap sin(oJFt - v) (34) 

the KB method tries to determine the conditions under which 

R(d/dt )X + Q(d/dt)f(X, J?) = U(d/dt)F(t) (35) 

has a periodic solution sufficiently close to X = A sin f2t, where f~, depending 
on whether the frequency of the forcing function F(t) is higher or lower than 
the equilibrium frequency oJ 0 of the homogeneous part of (35), is either oJ~, 
or co 0 . 

That a system has a solution of the aforementioned type cannot be 
established a priori, but there are both qualitative and quantitative measures 
as to the validity of such an approximation. We shall not go into the details of 
this procedure since an exhaustive discussion is given by Siljak. (16~ Basically, 
however, one assumes a solution of the form 

X(t)  = xl(t) + ~x(t) (36a) 

where xl(t) and x(t), respectively, denote the contributions of the first and 
higher harmonics, 

x~(t) = A1 sin f~lt (36b) 

x(t) = ~ Ak sin(kf21t + Ok) (36c) 
k = 2  
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The small parameter E (E << 1) associated with the function x(t) in (36a) 
ensures that the first harmonic dominates in the solution of (35). 

By substituting (36a) into (35), Fourier-expandingf(X, J/'), and equating 
to zero all harmonics of the same order, we obtain an equation for the first 
harmonic having accuracy of degree e, 

q ' d  _ ( ~ ) A ~  
~ ( J t ) ~ §  ~ ( ~ , ) ( q + ~ ) ~  ~ ~ ( o o s ~  

sin u d \  
 )xl = o 

(37) 
o r  

q' 

The coefficients q = q(A1, f~) and q' = q'(A1, f~) are the Fourier sine and 
cosine coefficients corresponding to the first harmonic in the expansion of 
f(X, fO, 

q = (lfir) f(A~ sin f, A~f~I cos ~:) sin ~: d( (38a) 

q' = (lfir) f(A1 sin ~', A ~ z  cos f) cos ~: d~: (38b) 

= fh t  (38c) 

Similar equations to (37) can be found for the higher harmonics. Qualitative 
criteria which permit neglect of the higher harmonics, thus resulting in an 
accurate characterization of (35) by (37), are: 

1. The polynomials k'(if~) and O(if~) satisfy the following relations: 

(a) deg Q(if2) < deg/~'(iO) 
(b) IO(ikf~)/k'(ikf2)[C~ << [O(if2)/k'(if~)lC~, k >1 2 
(c) lira [O.(ikf2)/k'(ikf2)[ -+ 0 Vk 

k ~ c o  

Conditions (a)-(c) imply that the homogeneous equivalent linear differential 
equation (37) effectively damps out or attenuates the higher harmonics so that 
their contribution to the solution becomes negligible. The coefficients C~, 
l/> 1, in (b) are the amplitudes of the harmonics in the Fourier expansion of 
f(X, J~) with C~ = (q2+ q,2)~/2. In situations where the Ck cannot be 
considered small in comparison to C1, (b) may be replaced by 

(b') ]O(ikf2)/k'(ik~2)[ << [~(if2)/k'(if2)l 

2. The polynomials R'(ikf2) cannot have purely imaginary zeros, 
k = 1, 2, 3,.... This criterion guarantees stability of the solution. 
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3. The function f(X, )~) should have finite partial derivatives with 
respect to its independent variables X and X, and should not be an explicit 
function of time. Thus f(X, )~) may belong to both the class of piecewise 
continuous and that of discontinuous functions of Heaviside type. 

In summary, then, the KB method assumes that in order to investigate 
the periodic solutions of the nonlinear differential equation (35), one may 
consider an associated linear differential equation (37), subject to the proviso 
that the aforementioned applicability conditions are met, in which the 
nonlinearity f(X, ~) has been expanded in a Fourier series but truncated at 
the first harmonic. 

The spirit of this procedure follows through for the stochastic differential 
equation (10), but now, depending on the statistics of F(t), the nonlinear 
function Y(t) is expanded with the orthogonal polynomial basis expressing 
these statistics [see Eqs. (14)-(18)]. The method of statistical linearization 
truncates this expansion at the linear term since for t > 0, [p(t)l < 1 and the 
expansion coefficients an 2 of Ryy(t) in (21a) are asymptotically at least 
O[(n!)-l]. However, when t is small (oa large), IP(t)l ~ 1 and the nonlinear 
distortions of Ryy(t) will be important. If  the equivalent linear equation to 
(10) obeys the applicability criteria of the KB method, 5 the nonlinear terms 
in Ryy(t) become attenuated and the statistical linearization approximation 
will still hold true even for small t. This statement can be made rigorous by 
examining the spectral density equation (23) and its quasilinear Green's 
function analog. Writing the error in statistical linearization as ~ ,  

O(iw) 2 , ,, I O(ioa) 2 , , ~ = ~ ovvbo) - ,1 + hl ~ oxxtoJ) 

O(iw) 12 ~ a~2S~(oJ) (39) 
- k( i~ , )  ~=2 

then, upon Fourier-transforming, 

[ o ~  I ~< sup ~ a~ 2 Ip(T)I Ip~(t - ")1 d~ = (e - 2) 
n = 2 =  - o 0  

[pO-)[ d, 

(40a) 

5 Unless the external excitation is some combination of noise and a deterministic 
sinusoidal or impulse signal, _R'(ioJ) is just R(ico). 

where 

pO-) = o~{ 2} (40b) O(io~) 

Equation (40a) states that the smaller the value of the integral of p(z), the 
smaller the error made when using statistical linearization. 
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When F(t) is some combination of noise and a deterministic sinusoidal 
or impulse signal, the KB and statistical linearization methods can be used in 
conjunction with .one another to determine the solution statistics. Discussion 
of this probIem will be deferred to a subsequent paper. 

5. D I S C U S S I O N  

For the case of normally distributed or harmonic excitations, linear 
stochastic differential equations have solutions which are, respectively, 
normally or harmonically distributed. We are not aware whether such simple 
linear transformations exist for other types of excitations. Since the method of  
statistical linearization reduces nonlinear stochastic differential equations to 
linear ones, within the approximations indicated in the body of  the paper, 
these desirable properties of  Gaussian and harmonic excitations will also 
hold true for those transformed nonlinear equations. 

It is for these reasons that statistical linearization, perhaps coupled with 
the KB method, is such a powerful technique, with the strengths of  this 
approach particularly evident when the stochasticity of the differential 
equation is due to Gaussian excitation. Then, if the modulus of the ratio 
[~(i~)/R(ico)[ is such that the passband 6 of the transfer function is less than 
the frequency band of Syg(OJ), Y(t) becomes "normal ized"  and Syr(o~) may 
be restricted to the linear term (first term) in its Hermite polynomial expan- 
sion. Since the dependent variables are now all normal, the Green's function 
solution is therefore also normal. Deviations from this "normalizat ion" 
condition lead to the requirement of additional terms in the expansion of 
Srr('~). If the excitation is some combination of a Gaussian and a harmonic 
signal, then after linearization the solution response, although Gaussian, will 
have shifted amplitudes and effective frequencies. 

This approach can possibly be extended to non-Gaussian excitations, 
but now the nonlinear stochastic differential equation is appropriately 
linearized by virtue of the particular orthogonal polynomial expansion 
expressing the distribution characteristics of the excitation. At the time of 
writing, although bounds analogous to (40a) for the linearized error should 
be easily derivable, it is unknown to this author whether the previous applica- 
bility criteria (a)-(c) still hold or even if rule of thumb conditions similar to 
the bandpass arguments for normal signals (necessary to minimize distortion 
effects due to the nonlinearity) exist or can be found. 

6 For the linear transformation Z* : F(t) ~ X(t) and its corresponding spectral density 
relation S~x(o~) = I~b(i~o)12S~F(oO, we determine sets {~ojl}, {wj}, and {o~j2} 9: for each j, 
~ojz < o~j < oJj2. The ~oj and coj~ are found, respectively, by computing maxt~01)]~b(i~o)l 2 
and by the relation I~b(i~ojl)] 2 = 14~(i~0j2)12 = �89 Then for each j, the passband 
of the transfer function [4~(h0)12 is [~ojl - ~oj2[. 
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APPENDIX A. DERIVATION OF THE C U M U L A N T  DISCARD 
A N D  QUASILINEAR GREEN'S FUNCTION 
AUTOCORRELATION EQUATIONS 

Upon Fourier-transforming the cumulant discard or quasilinear Green's 
function equations 

Sxx(OJ) = [~b(iw)12SFF(oJ) -T- [~bl(iw)[ 2 ~ a.2S~(oJ) (A.1) 
n = 2  

one obtains their respective autocorrelation function equations (26) and (32), 

Rxx('r) = Ro('C) -T- ,~=2 ~ , I _  oo dr '  RI(T')R~x(~- - -c') (A.2) 

This is readily apparent on defining 

Ro(t) = (1/2,~) e*~t[r 2 do~ 

R~(t)  = (1/2~r) e*~tl~bl(iw)[2 do~ (A.3) 
m 

Rx~(t )  = (1/2~r  e~'S~.(o))  do) 
oo 

and utilizing (22a) and the convolution property of Fourier integrals, so that 

[~(i~o)12&(~o) = dt '  e -*~t' R ~ ( r ) p ~ ( t '  -- r) d~" (A.4) 
~ o o  , J - o o  

Insertion of these definitions into the Fourier transform of (A.1) results in, 
for d-delta-correlated noise F( t ) ,  

R~x( t )  = dRo(t )  -~ -~-~ j _  ~ do) e ~* dt e -~mt R~('r)pxx(t - r )  dT 

+ o o  

r ~ = 2  
- -oo  

= dRo(t )  T- ,=2 "~x~,)-o~ dr  R~( -r )R~( t  - -r) (A.5) 

By setting d = 1, (A.2) follows. 
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A P P E N D I X  B. EXISTENCE A N D  U N I Q U E N E S S  OF THE 
H A M M E R S T E I N  INTEGRAL E Q U A T I O N  (~7) 

The Hammerstein integral equation 

or, in general, 

y(s) = f~ k(s, t)f[t, y(t)]  dt (B.la) 

t" 
y(s) = Jo k(s, Of[t, y(t)]  dt + u(s) (B.lb) 

defined over the bounded or infinite domain G _ E" (s, t ~ G), can be written 
in operator-theoretic terms 

y = S ( ~ - y  + u ( B . 2 a )  

by defining ~ as the operator (on the space of  all real-valued functions on G) 
[Y(y)]( t )  = f ( t , y ( t ) )  and ~ as the linear operator [JY'(y)](s)= 

fa k(s, t)y(t) tit. 
Thus, on a Hilbert space ~ f  with real or complex scalars, ~ and ~" 

define the mappings 

~": ~ - - >  ~ ,  ~-: ~ - +  J6 '~ (B.3) 

An operator f defined on ~ will be called monotonic, designated 
9-  >/ 0, provided that Vxl, x2 e ~ the real part of the inner product (., .) 
satisfies the inequality 

Re(x1 - x2 ,3-x l  - ~ - x 2 )  >/ 0 ( B . 4 a )  

If  the operator satisfies the condition 

Re(x1 - x2,oq'xl - J-x2) >>- (Re/z)l]x~ - x21t 2 (B.4b) 

it will be called tz monotonic, written J -  t> tzl, with I being the identity. For 
/~ > 0, ~-- is strongly monotonic. 

A function 3-:  ,Of ~ ocf is called Lipschitzian on N ~ ~ if 3 a number k, 
the Lipschitz constant, such that u x2 e N, 

rig-x1 - 3-x211 kllx  - x21l (B.Sa)  

The infimum of the set of Lipschitz constants is called the Lipschitz norm 
t[3-lt~, 

r/Y'II~ = max{[]J-x1 - Jx~ll/llx~ - x~H), xx r x2 (B.Sb) 

J is Lipsehitzian on bounded sets if, for every bounded set ~ = ~ ,  ll~"t[~ < 
~ ,  and is called bounded if it maps bounded sets into bounded sets. 
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Lemma B.1. I f 3 -  is a linear/z-monotonic function defined on 9~, then ~Y- 
is bounded. 

We now state, without proof, the necessary assumptions and theorems 
demonstrating the existence and uniqueness of  R ~ ( t ) .  Details are given in 
Ref. 17. Convenient formulation of these proofs, however, will necessitate 
recasting (B.2a) into the following equivalent equations: 

~y  = u (B.2b) 

y = r162 = JT 'a~ + ua, A e r ( J f )  (B.2c) 

For the former, fr (N: o"/t ~ -+ ~ )  is defined by fr = 1 -  ~ , ,  with 
~(fr = N(o~).7 The inverse of fr (if it exists) will be denoted by r 

For the latter equation, (B.2c), given any scalar ~ and a set of scalars 
r(Yf) for which (I  - ~:f ') is bijective, 8 

~ a  = ( I  - ha l ) -1 ,  o~ x = o~- - M, ua = Lau, La = ( I  - h f ) - i  
(B.6) 

Then, for specified minimal assumptions H1 and H2, and t~ > v, 

Hi :  Suppose SU is bounded and ~(oU) = Jt~; then 3 a number v, 
(v, oo) = z ( ~ ) ,  such that V/~ > vl[Yf~[] ~< ()t - v) -1 

H2: For some t z , ~  /> td  

the uniqueness of  solutions to (B.2a) and consequently the existence of 
with domain ~(fr follows with the theorem: 

Theorem B.1. [Uniqueness]. Suppose H1 and Hz pertain. I f  tL > v, 
then (B.2a) has at most one solution, and as a consequence fr has an inverse 

4: ~(~)  -+ ~(~-). 

The important implication of this theorem is that the existence of r is 
completely independent of  the continuity properties of  ~ .  

The existence of solutions to (B.2a) is determined by imposing, in addi- 
tion to the above minimal hypothesis, specific restrictions on ~ff and ~ .  
In particular, the restrictions on o~ are concerned with its domain, bounded- 
ness, continuity, and the range of (o~" + (e - tz)I), E > 0. For S the re- 
strictions are primarily directed toward its being bijective or not. The follow- 
ing theorems will consider situations where (i) of" is bijective and o~- is 
Lipschitzian on bounded sets, (ii) ~ is bijective and o~- is bounded but not 
Lipschitzian, and (iii) Yf is not bijective. 

7 For any 3-: Yg ~ o~, N(9-) denotes its domain and ~(3-) its range. 
s A function ~ is bijective on Yg if ~ - 1  exists and N(~f') = Ye'. 
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Theorem B.2. Assume tha t  H1 and H2 hold true. I f  9 ( ~ ' )  = ~ and 
is Lipschitzian on bounded  sets, then for  tz > v, ~u exists and is the unique 
solution to (B.2a). 

I f  for  this theorem llsr < 1, the contract ive mapp ing  theorem yields 
fr by successive approximat ions .  However ,  if  oU~- is neither Lipschitzian on 

nor  contract ive on any subset o f  ~ ,  one can still vary  h in (B.2c) in a 
way which places the norms  o f  II  ll and II ll into compet i t ion  with each 
other. Thus,  for  some a > v and for  a closed ball centered at u, [ ]xa~ l l  < 1 
and the contract ive mapp ing  theorem yields afga = ( I  - d a d ) -  z. In  general, 
therefore,  flu m a y  be obtained by  successive i terations on ~r 

Theorem B.3. Assume that  H~ and H2 hold true and t ha t / , '  = / ,  - v > 
0. I f  .,4/is bijective, then ~ is Lipschitzian on ~ with n o r m  l] ~b l[ ~< l] ~g'-  1 []/td; 
fur thermore ,  a solution to (B.2a) exists if  for  some ~ < /~, ~ ( ~ 0 )  = ~ .  

Theorem B.4. Assume that  H~ and H2 hold true and that  t~ > v. I f  SU 
is not  bijective, then the existence of  a solution to (B.2a) requires the 
boundedness  of  ~.. 

There are a number  of  ramifications to this theorem which affect not  
only the existence o f  (B.2a) but  even the continuity of  ~b. I f  ~ is not  bijective, 
then the smoothness  propert ies  o f ~  are reflected by  those o f ~ .  While ff is still 
defined on ~ ( ~ ) ,  now it need not  be continuous.  I f  ~ is merely bounded,  
then ff is HSlder  cont inuous 9 with exponent  1/2 on ~ ( J )  c~ ~ ( ~ ) ,  with the 
modulus  of  continuity increasingly improving  with continuity assumpt ions  
on J. .  Thus,  if o ~- is Lipschitzian on bounded  sets, so is ~. 

A C K N O W L E D G  M ENTS  

The subject o f  this research was suggested by Prof. K. E. Shuler and was 
carried out  by the au thor  during his stay as a Postdoctora l  Fellow at UCSD.  
The author  wishes to acknowledge m a n y  helpful discussions with Profs. 
Shuler and Lindenberg at  U C S D  and Prof.  T. K. Caughey of  the California 
Insti tute of  Technology during the course ,of this work.  

R E F E R E N C E S  

1. R. Zwanzig, in Proceedings o f  the Sixth IUPAP Conference on Statistical Mechanics, 
The University of Chicago Press (1972), p. 241. 

2. S. Nordholm and R. Zwanzig, J. Stat. Phys. 13:347 (1975). 

9 A function 3" is called ~-tttlderian on ~ (0 ~< ~ ~< 1) if 3 a number k 9: Vxl, x2 ~ ~, 
Ii~-xl - Yx~ II ~< k]/xl - x~ II~. It is called Htlderian on bounded sets if for each bounded 
set ~ c ~ one can find a HSlder constant k(~) and exponent ~(-@). 



374 Aaron B. Budgor 

3. K. Kawasaki, Phys. Rev. 150:291 (1966); Ann. Phys. 61:1 (1970). 
4. R. H. Kraichnan, in Proceedings of the Sixth IUPAP Conference on Statistical 

Mechanics, The University of Chicago Press (1972), p. 201. 
5. Y. K. Lin, "Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York 

(1967), p. 258. 
6. A. A. Pervozvanskii, Random Processes in Nonlinear Control Systems, in Mathe- 

matics in Science and Engineering, Vol. 15, Academic Press, New York (1965). 
7. N. Krylov and N. Bogoliubov, Introduction ~t la m6canique nonlineaire: 16s m6thodes 

approch6es et asymptotiques, Ukr. Akad. Nauk Inst. M~canique, Chaire de Phys. 
Math. Ann. 1-2 (1937); transl, by S. Lefschetz, Annals of Math. Studies, Vol. 11, 
Princeton Univ. Press, Princeton, New Jersey (1947). 

8. R. C. Booton, Trans. IRE CT-I:9 (1954). 
9. T. K. Caughey, J. Acoust. Soc. Am. 35:1706 (1963). 

10. S. H. Crandall, Zagadnienia Drgan Nielinowych 14:39 (1973). 
11. A. B. Budgor, K. Lindenberg, and K. E. Shuler, J. Star. Phys., this issue, following 

paper. 
12. M. Bixon and R. Zwanzig, J. Stat. Phys. 3:245 (1971). 
13. G. H. Klein, J. Acoust. Soc. Am. 36:2095 (1964). 
14. J. B. Morton and S. Corrsin, J. Stat. Phys. 2:153 (1970). 
15. J. K. Lubbock, Proc. lEE 107C:60 (1959). 
16. D. D. ~iljak, Nonlinear Systems: The Parameter Analysis and Design, Wiley, New 

York (1969). 
17. I. I. Kolodner, J. Math. Mech. 13:701 (1964). 


